Communication-Efficient Federated Learning With Data and Client Heterogeneity

Abstract

Federated Learning (FL) enables large-scale distributed training of machine learning models, while still allowing individual nodes to maintain data locally. However, executing FL at scale comes with inherent practical challenges: 1) heterogeneity of the local node data distributions, 2) heterogeneity of node computational speeds (asynchrony), but also 3) constraints in the amount of communication between the clients and the server. In this work, we present the first variant of the classic federated averaging (FedAvg) algorithm which, at the same time, supports data heterogeneity, partial client asynchrony, and communication compression. Our algorithm comes with a rigorous analysis showing that, in spite of these system relaxations, it can provide similar convergence to FedAvg in interesting parameter regimes. Experimental results in the rigorous LEAF benchmark on setups of up to 300300 nodes show that our algorithm ensures fast convergence for standard federated tasks, improving upon prior quantized and asynchronous approaches

    Similar works

    Full text

    thumbnail-image

    Available Versions