Optimizing Irregular Communication with Neighborhood Collectives and Locality-Aware Parallelism

Abstract

Irregular communication often limits both the performance and scalability of parallel applications. Typically, applications individually implement irregular messages using point-to-point communications, and any optimizations are added directly into the application. As a result, these optimizations lack portability. There is no easy way to optimize point-to-point messages within MPI, as the interface for single messages provides no information on the collection of all communication to be performed. However, the persistent neighbor collective API, released in the MPI 4 standard, provides an interface for portable optimizations of irregular communication within MPI libraries. This paper presents methods for optimizing irregular communication within neighborhood collectives, analyzes the impact of replacing point-to-point communication in existing codebases such as Hypre BoomerAMG with neighborhood collectives, and finally shows an up to 1.32x speedup on sparse matrix-vector multiplication within a BoomerAMG solve through the use of our optimized neighbor collectives. The authors analyze multiple implementations of neighborhood collectives, including a standard implementation, which simply wraps standard point-to-point communication, as well as multiple implementations of locality-aware aggregation. All optimizations are available in an open-source codebase, MPI Advance, which sits on top of MPI, allowing for optimizations to be added into existing codebases regardless of the system MPI install

    Similar works

    Full text

    thumbnail-image

    Available Versions