Taming Friedrich-Wintgen interference in resonant metasurface: vortex laser emitting at on-demand tilted-angle

Abstract

Friedrich-Wintgen (FW) interference is an atypical coupling mechanism that grants loss exchange between leaky resonances in non-Hermitian classical and quantum systems. Intriguingly, such an mechanism makes it possible for destructive interference scenario in which a radiating wave becomes a bound state in the continuum (BIC) by giving away all of its losses. Here we propose and demonstrate experimentally an original concept to tailor FW-BICs as polarization singularity at on-demand wavevectors in optical metasurface. As a proof-of-concept, using hybrid organic-inorganic halide perovskite as active material, we empower this novel polarization singularity to obtain lasing emission exhibiting both highly directional emission at oblique angles and polarization vortex in momentum space. Our results pave the way to steerable coherent emission with tailored polarization pattern for applications in optical communication/manipulation in free-space, high-resolution imaging /focusing and data storage

    Similar works

    Full text

    thumbnail-image

    Available Versions