ICEBEAR-3D: An Advanced Low Elevation Angle Auroral E region Imaging Radar

Abstract

The Ionospheric Continuous-wave E region Bistatic Experimental Auroral Radar (ICEBEAR) is an auroral E~region radar which has operated from 7 December 2017 until the September 2019. During the first two years of operation, ICEBEAR was only capable of spatially locating E~region scatter and meteor trail targets in range and azimuth. Elevation angles were not determinable due to its East-West uniform linear receiving antenna array. Measuring elevation angles of targets when viewing from low elevation angles with radar interferometers has been a long standing problem. Past high latitude radars have attempted to obtain elevation angles of E~region targets using North-South baselines, but have always resulted in erroneous elevation angles being measured in the low elevation regime (0° to ≈30° above the horizon), leaving interesting scientific questions about scatter altitudes in the auroral E~region unanswered. The work entailed in this thesis encompasses the design of the ICEBEAR-3D system for the acquisition of these important elevation angles. The receiver antenna array was redesigned using a custom phase error minimization and stochastic antenna location perturbation technique, which produces phase tolerant receiver antenna arrays. The resulting 45-baseline sparse non-uniform coplanar T-shaped array was designed for aperture synthesis radar imaging. Conventional aperture synthesis radar imaging techniques assume point-like incoherent targets and image using a Cartesian basis over a narrow field of view. These methods are incompatible with horizon pointing E~region radars such as ICEBEAR. Instead, radar targets were imaged using the Suppressed Spherical Wave Harmonic Transform (Suppressed-SWHT) technique. This imaging method uses precalculated spherical harmonic coefficient matrices to transform the visibilities to brightness maps by direct matrix multiplication. The under sampled image domain artefacts (dirty beam) were suppressed by the products of differing harmonic order brightness maps. From the images, elevation and azimuth angles of arrival were obtained. Due to the excellent phase tolerance of ICEBEAR new light was shed on the long standing low elevation angle problem. This led to the development of the proper phase reference vertical interferometry geometry, which allowed horizon pointing radar interferometers to unambiguously measure elevation angles near the horizon. Ultimately resulting in accurate elevation angles from zenith to horizon

    Similar works