research

Classical biological control: exploiting enemy escape to manage plant invasions

Abstract

Practitioners of classical biological control of invasive weeds are confronted with a dual expectation: to achieve successful control of plant invaders and to avoid damage to nontarget plants and adverse indirect effects. In this paper we discuss key issues that we consider to be crucial for a safe, efficient, and successful classical biological control project, and that have also caused some recent controversy. These include selection of effective control agents, host specificity of the biological control agents, implications of the genetic population structure of the target populations, and potential impact on native food webs. With regard to improving the success rate of biological control of plant invaders, we first emphasize the importance of a clear a priori definition of success and a more ecosystem-based approach to better document both negative effects of the invasive plant as well as potential positive and negative effects of introducing biological control agents. Secondly, pre-release impact assessment could be improved by better focusing on how to reach high densities of the control agents and by including tolerance to and compensation of herbivory. Thirdly, we advocate a reinforced effort to integrate and combine biological control in combination with existing or potential management options. Finally, we propose various ecological and evolutionary hypotheses in the framework of our topic to document that biological control programmes against plant invaders also offer a great opportunity to gain new insights into basic processes in ecology and evolution

    Similar works