research

N-Glycans mutations rule oligomeric assembly and functional expression of P2X3 receptor for extracellular ATP

Abstract

N-Glycosylation affects the function of ion channels at the level of multisubunit assembly, protein trafficking, ligand binding and channel opening. Like the majority of membrane proteins, ionotropic P2X receptors for extracellular ATP are glycosylated in their extracellular moiety. Here, we used site-directed mutagenesis to the four predicted N-glycosylation sites of P2X3 receptor (Asn139, Asn170, Asn194 and Asn290) and performed comparative analysis of the role of N-glycans on protein stability, plasma membrane delivery, trimer formation and inward currents. We have found that in transiently transfected HEK293 cells, Asn170 is apparently the most important site for receptor stability, since its mutation causes a primary loss in protein content and indirect failure in membrane expression, oligomeric association and inward current responses. Even stronger effects are obtained when mutating Thr172 in the same glycosylation consensus. Asn194 and Asn290 are the most dispensable, since even their simultaneous mutation does not affect any tested receptor feature. All double mutants containing Asn170 mutation or the Asn139/Asn290 double mutant are instead almost unable to assemble into a functional trimeric structure. The main emerging finding is that the inability to assemble into trimers might account for the impaired function in P2X3 mutants where residue Asn170 is replaced. These results improve our knowledge about the role of N-glycosylation in proper folding and oligomeric association of P2X3 recepto

    Similar works