Interpretable simultaneous localization of MRI corpus callosum and classification of atypical Parkinsonian disorders using YOLOv5

Abstract

Structural MRI(S-MRI) is one of the most versatile imaging modality that revolutionized the anatomical study of brain in past decades. The corpus callosum (CC) is the principal white matter fibre tract, enabling all kinds of inter-hemispheric communication. Thus, subtle changes in CC might be associated with various neurological disorders. The present work proposes the potential of YOLOv5-based CC detection framework to differentiate atypical Parkinsonian disorders (PD) from healthy controls (HC). With 3 rounds of hold-out validation, mean classification accuracy of 92% is obtained using the proposed method on a proprietary dataset consisting of 20 healthy subjects and 20 cases of APDs, with an improvement of 5% over SOTA methods (CC morphometry and visual texture analysis) that used the same dataset. Subsequently, in order to incorporate the explainability of YOLO predictions, Eigen CAM based heatmap is generated for identifying the most important sub-region in CC that leads to the classification. The result of Eigen CAM showed CC mid-body as the most distinguishable sub-region in classifying APDs and HC, which is in-line with SOTA methodologies and the current prevalent understanding in medicine

    Similar works

    Full text

    thumbnail-image

    Available Versions