Turning catalytically active pores into active pumps

Abstract

We develop a semi-analytical model of self-diffusioosmotic transport in active pores, which includes advective transport and the inverse chemical reaction which consumes solute. In previous work (Phys. Rev. Lett. 129, 188003, 2022), we have demonstrated the existence of a spontaneous symmetry breaking in fore-aft symmetric pores that enables them to function as a micropump. We now show that this pumping transition is controlled by three timescales. Two timescales characterize advective and diffusive transport. The third timescale corresponds to how long a solute molecule resides in the pore before being consumed. Introducing asymmetry to the pore (either via the shape or the catalytic coating) reveals a second type of advection-enabled transitions. In asymmetric pores, the flow rate exhibits discontinuous jumps and hysteresis loops upon tuning the parameters that control the asymmetry. This work demonstrates the interconnected roles of shape and catalytic patterning in the dynamics of active pores, and shows how to design a pump for optimum performance

    Similar works

    Full text

    thumbnail-image

    Available Versions