A high-rate oxidation pond is studied as a model system for comparing 14C and oxygen evolution methods as tools for measuring primary productivity in hypertrophic aquatic systems. Our results indicate that at very dense algal populations (up to 5 mg chl. a l−1) and high photosynthetic rates, 14C based results may severely underestimate primary productivity, unless a way is found to keep incubation times very short. Results obtained with our oxygen electrode were almost an order of magnitude higher than those obtained by all 14C procedures. These higher values correspond fairly well with a field-tested computer-simulation model, as well as with direct harvest data obtained at the same pond when operated under similar conditions. The examination of the size-fractionation of the photosynthetic activity underscored the important contribution of nannoplanktonic algae to the total production of the syste