research

Generalized convolution quadrature with variable time stepping

Abstract

In this paper, we will present a generalized convolution quadrature for solving linear parabolic and hyperbolic evolution equations. The original convolution quadrature method by Lubich works very nicely for equidistant time steps while the generalization of the method and its analysis to nonuniform time stepping is by no means obvious. We will introduce the generalized convolution quadrature allowing for variable time steps and develop a theory for its error analysis. This method opens the door for further development towards adaptive time stepping for evolution equations. As the main application of our new theory, we will consider the wave equation in exterior domains which is formulated as a retarded boundary integral equatio

    Similar works