research

Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS

Abstract

Defects in axonal transport are thought to contribute to the pathogenesis of neurodegenerative disease. Because α-tubulin acetylation facilitates axonal transport, inhibition of the α-tubulin deacetylating enzymes, histone deacetylase 6 (Hdac6) and silent information regulator 2 (Sirt2), is thought to be an interesting therapeutic strategy for these conditions. Amyotrophic lateral sclerosis (ALS) is a one such rapidly progressive and fatal neurodegenerative disorder, in which axonal transport defects have been found in vitro and in vivo. To establish whether the inhibition of Hdac6 or Sirt2 may be of interest for ALS treatment, we investigated whether deleting Hdac6 or Sirt2 from the superoxide dismutase 1, SOD1G93A mouse affects the motor neuron degeneration in this ALS model. Deletion of Hdac6 significantly extended the survival of SOD1G93A mice without affecting disease onset, and maintained motor axon integrity. This protective effect was associated with increased α-tubulin acetylation. Deletion of Sirt2 failed to affect the disease course, but also did not modify α-tubulin acetylation. These findings show that Hdac6, rather than Sirt2, is a therapeutic target for the treatment of ALS. Moreover, Sirt2 appears not to be a major α-tubulin deacetylase in the nervous syste

    Similar works