The exploration of the non-protein-coding RNA (ncRNA) transcriptome is currently focused on profiling of microRNA expression and detection of novel ncRNA transcription units. However, recent studies suggest that RNA processing can be a multi-layer process leading to the generation of ncRNAs of diverse functions from a single primary transcript. Up to date no methodology has been presented to distinguish stable functional RNA species from rapidly degraded side products of nucleases. Thus the correct assessment of widespread RNA processing events is one of the major obstacles in transcriptome research. Here, we present a novel automated computational pipeline, named APART, providing a complete workflow for the reliable detection of RNA processing products from next-generation-sequencing data. The major features include efficient handling of non-unique reads, detection of novel stable ncRNA transcripts and processing products and annotation of known transcripts based on multiple sources of information. To disclose the potential of APART, we have analyzed a cDNA library derived from small ribosome-associated RNAs in Saccharomyces cerevisiae. By employing the APART pipeline, we were able to detect and confirm by independent experimental methods multiple novel stable RNA molecules differentially processed from well known ncRNAs, like rRNAs, tRNAs or snoRNAs, in a stress-dependent manne