Securing Cloud File Systems using Shielded Execution

Abstract

Cloud file systems offer organizations a scalable and reliable file storage solution. However, cloud file systems have become prime targets for adversaries, and traditional designs are not equipped to protect organizations against the myriad of attacks that may be initiated by a malicious cloud provider, co-tenant, or end-client. Recently proposed designs leveraging cryptographic techniques and trusted execution environments (TEEs) still force organizations to make undesirable trade-offs, consequently leading to either security, functional, or performance limitations. In this paper, we introduce TFS, a cloud file system that leverages the security capabilities provided by TEEs to bootstrap new security protocols that meet real-world security, functional, and performance requirements. Through extensive security and performance analyses, we show that TFS can ensure stronger security guarantees while still providing practical utility and performance w.r.t. state-of-the-art systems; compared to the widely-used NFS, TFS achieves up to 2.1X speedups across micro-benchmarks and incurs <1X overhead for most macro-benchmark workloads. TFS demonstrates that organizations need not sacrifice file system security to embrace the functional and performance advantages of outsourcing

    Similar works

    Full text

    thumbnail-image

    Available Versions