Kinship can hinder cooperation in heterogeneous populations

Abstract

Kin selection and direct reciprocity are two most basic mechanisms for promoting cooperation in human society. Generalizing the standard models of the multi-player Prisoner's Dilemma and the Public Goods games for heterogeneous populations, we study the effects of genetic relatedness on cooperation in the context of repeated interactions. Two sets of interrelated results are established: a set of analytical results focusing on the subgame perfect equilibrium and a set of agent-based simulation results based on an evolutionary game model. We show that in both cases increasing genetic relatedness does not always facilitate cooperation. Specifically, kinship can hinder the effectiveness of reciprocity in two ways. First, the condition for sustaining cooperation through direct reciprocity is harder to satisfy when relatedness increases in an intermediate range. Second, full cooperation is impossible to sustain for a medium-high range of relatedness values. Moreover, individuals with low cost-benefit ratios can end up with lower payoffs than their groupmates with high cost-benefit ratios. Our results point to the importance of explicitly accounting for within-population heterogeneity when studying the evolution of cooperation

    Similar works

    Full text

    thumbnail-image

    Available Versions