Hydrodynamic limits for conservative kinetic equations: a spectral and unified approach in the presence of a spectral gap

Abstract

Triggered by the fact that, in the hydrodynamic limit, several different kinetic equations of physical interest all lead to the same Navier-Stokes-Fourier system, we develop in the paper an abstract framework which allows to explain this phenomenon. The method we develop can be seen as a significant improvement of known approaches for which we fully exploit some structural assumptions on the linear and nonlinear collision operators as well as a good knowledge of the Cauchy theory for the limiting equation. We adopt a perturbative framework in a Hilbert space setting and first develop a general and fine spectral analysis of the linearized operator and its associated semigroup. Then, we introduce a splitting adapted to the various regimes (kinetic, acoustic, hydrodynamic) present in the kinetic equation which allows, by a fixed point argument, to construct a solution to the kinetic equation and prove the convergence towards suitable solutions to the Navier-Stokes-Fourier system. Our approach is robust enough to treat, in the same formalism, the case of the Boltzmann equation with hard and moderately soft potentials, with and without cut-off assumptions, as well as the Landau equation for hard and moderately soft potentials in presence of a spectral gap. New well-posedness and strong convergence results are obtained within this framework. In particular, for initial data with algebraic decay with respect to the velocity variable, our approach provides the first result concerning the strong Navier-Stokes limit from Boltzmann equation without Grad cut-off assumption or Landau equation. The method developed in the paper is also robust enough to apply, at least at the linear level, to quantum kinetic equations for Fermi-Dirac or Bose-Einstein particles

    Similar works

    Full text

    thumbnail-image

    Available Versions