A joint estimation approach for monotonic regression functions in general dimensions

Abstract

Regression analysis under the assumption of monotonicity is a well-studied statistical problem and has been used in a wide range of applications. However, there remains a lack of a broadly applicable methodology that permits information borrowing, for efficiency gains, when jointly estimating multiple monotonic regression functions. We introduce such a methodology by extending the isotonic regression problem presented in the article "The isotonic regression problem and its dual" (Barlow and Brunk, 1972). The presented approach can be applied to both fixed and random designs and any number of explanatory variables (regressors). Our framework penalizes pairwise differences in the values (levels) of the monotonic function estimates, with the weight of penalty being determined based on a statistical test, which results in information being shared across data sets if similarities in the regression functions exist. Function estimates are subsequently derived using an iterative optimization routine that uses existing solution algorithms for the isotonic regression problem. Simulation studies for normally and binomially distributed response data illustrate that function estimates are consistently improved if similarities between functions exist, and are not oversmoothed otherwise. We further apply our methodology to analyse two public health data sets: neonatal mortality data for Porto Alegre, Brazil, and stroke patient data for North West England

    Similar works

    Full text

    thumbnail-image

    Available Versions