research

Inhibition of DNA polymerase reactions by pyrimidine nucleotide analogues lacking the 2-keto group

Abstract

To investigate the influence of the pyrimidine 2-keto group on selection of nucleotides for incorporation into DNA by polymerases, we have prepared two C nucleoside triphosphates that are analogues of dCTP and dTTP, namely 2-amino-5-(2′-deoxy-β-d-ribofuranosyl) pyridine-5′-triphosphate (d*CTP) and 5-(2′-deoxy-β-d-ribofuranosyl)-3-methyl-2-pyridone-5′-triphosphate (d*TTP) respectively. Both proved strongly inhibitory to PCR catalysed by Taq polymerase; d*TTP rather more so than d*CTP. In primer extension experiments conducted with either Taq polymerase or the Klenow fragment of Escherichia coli DNA polymerase I, both nucleotides failed to substitute for their natural pyrimidine counterparts. Neither derivative was incorporated as a chain terminator. Their capacity to inhibit DNA polymerase activity may well result from incompatibility with the correctly folded form of the polymerase enzyme needed to stabilize the transition state and catalyse phosphodiester bond formatio

    Similar works