Latent Combinational Game Design

Abstract

We present latent combinational game design -- an approach for generating playable games that blend a given set of games in a desired combination using deep generative latent variable models. We use Gaussian Mixture Variational Autoencoders (GMVAEs) which model the VAE latent space via a mixture of Gaussian components. Through supervised training, each component encodes levels from one game and lets us define blended games as linear combinations of these components. This enables generating new games that blend the input games and controlling the relative proportions of each game in the blend. We also extend prior blending work using conditional VAEs and compare against the GMVAE and additionally introduce a hybrid conditional GMVAE (CGMVAE) architecture which lets us generate whole blended levels and layouts. Results show that the above approaches can generate playable games that blend the input games in specified combinations. We use both platformers and dungeon-based games to demonstrate our results

    Similar works

    Full text

    thumbnail-image

    Available Versions