research

Flame-coating of titania particles with silica

Abstract

Silica/titania composite particles were prepared by co-oxidation of titanium-tetra-isopropoxide and hexamethyldisiloxane in a co-flow diffusion flame reactor. The influence of precursor composition on product powder characteristics was studied by x-ray diffraction, nitrogen adsorption, electron microscopy, elemental mapping, and energy-dispersive x-ray analysis. The flame temperature was measured by Fourier transform infrared spectroscopy. The evolution of composite particle morphology from ramified agglomerates to spot- or fully coated particles was investigated by thermophoretic sampling and transmission/scanning electron microscopy. At 40-60 wt% TiO2, particles with segregated regions of silica and titania were formed, while at 80 wt% TiO2 rough silica coatings were obtained. Rapid flame-quenching with a critical flow nozzle at 5 cm above the burner nearly halved the product particle size, changed its crystallinity from pure anatase to mostly rutile and resulted in smooth silica coatings on particles containing 80 wt% TiO

    Similar works