Transcriptomic signature of fasting in murine adipose tissue

Abstract

Little is known about the impact of fasting on gene regulation in human adipose tissue. Accordingly, the objective of this study was to investigate the effects of fasting on adipose tissue gene expression in humans. To that end, subcutaneous adipose tissue biopsies were collected from volunteers 2h and 26h after consumption of a standardized meal. For comparison, epididymal adipose tissue was collected from C57Bl/6J mice after a 16h fast and in the ab-libitum fed state. Transcriptome analysis was carried out using Affymetrix microarrays. We found that, 1) fasting downregulated numerous metabolic pathways in human adipose tissue, including triglyceride and fatty acid synthesis, glycolysis and glycogen synthesis, TCA cycle, oxidative phosphorylation, mitochondrial translation, and insulin signaling; 2) fasting downregulated genes involved in proteasomal degradation in human adipose tissue; 3) fasting had much less pronounced effects on the adipose tissue transcriptome in humans than mi ce; 4) although major overlap in fasting-induced gene regulation was observed between human and mouse adipose tissue, many genes were differentially regulated in the two species, including genes involved in insulin signaling (PRKAG2, PFKFB3), PPAR signaling (PPARG, ACSL1, HMGCS2, SLC22A5, ACOT1), glycogen metabolism (PCK1, PYGB), and lipid droplets (PLIN1, PNPLA2, CIDEA, CIDEC). In conclusion, although numerous genes and pathways are regulated similarly by fasting in human and mouse adipose tissue, many genes show very distinct responses to fasting in humans and mice. Our data provide a useful resource to study adipose tissue function during fasting. Overall design: Microarray analysis was performed on gonadal adipose tissue in the fed or after a 16 hours fast: Three to four month old C57BL/6 mice were fasted for 16 hours or fed ad libitum. Gonadal white adipose tissue was collected to find changes in gene expression upon fasting in the white adipose tissue

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 20/04/2023