The physiological, perceptual and neuromuscular responses of team sport athletes to a running and cycling high intensity interval training session

Abstract

Purpose: The acute physiological, perceptual and neuromuscular responses to volume-matched running and cycling high intensity interval training (HIIT) were studied in team sport athletes. Methods: In a randomized cross-over design, 11 male team sport players completed 3 × 6 min (with 5 min between sets) repeated efforts of 15 s exercising at 120% speed (sV ˙ O2max) or power (pV ˙ O2max) at V ˙ O2max followed by 15 s passive recovery on a treadmill or cycle ergometer, respectively. Results: Absolute mean V ˙ O2 (ES [95% CI] = 1.46 [0.47–2.34], p 90% V ˙ O2max during the HIIT was higher for running compared to cycling (ES [95% CI] = 1.21 [0.26–2.07], p = 0.015). Overall differential RPE (dRPE) (ES [95% CI] = 0.55 [− 0.32–1.38], p = 0.094) and legs dRPE (ES [95% CI] = − 0.65 [− 1.48–0.23], p = 0.111) were similar, whereas breathing dRPE (ES [95% CI] = 1.01 [0.08–1.85], p = 0.012) was higher for running. Maximal isometric knee extension force was unchanged after running (ES [95% CI] = − 0.04 [− 0.80–0.8], p = 0.726) compared to a moderate reduction after cycling (ES [95% CI] = − 1.17 [− 2.02–0.22], p = 0.001). Conclusion: Cycling HIIT in team sport athletes is unlikely to meet the requirements for improving run-specific metabolic adaptation but might offer a greater lower limb neuromuscular load

    Similar works