Improved maximum-likelihood quantum amplitude estimation

Abstract

Quantum amplitude estimation is a key subroutine in a number of powerful quantum algorithms, including quantum-enhanced Monte Carlo simulation and quantum machine learning. Maximum-likelihood quantum amplitude estimation (MLQAE) is one of a number of recent approaches that employ much simpler quantum circuits than the original algorithm based on quantum phase estimation. In this article, we deepen the analysis of MLQAE to put the algorithm in a more prescriptive form, including scenarios where quantum circuit depth is limited. In the process, we observe and explain particular ranges of `exceptional' values of the target amplitude for which the algorithm fails to achieve the desired precision. We then propose and numerically validate a heuristic modification to the algorithm to overcome this problem, bringing the algorithm even closer to being useful as a practical subroutine on near- and mid-term quantum hardware.Comment: 22+2 pages, 10 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions