research

Reformation of casein particles from alkaline-disrupted casein micelles

Abstract

In this study, the properties of casein particles reformed from alkaline disrupted casein micelles were studied. For this purpose, micelles were disrupted completely by increasing milk pH to 10·0, and subsequently reformed by decreasing milk pH to 6·6. Reformed casein particles were smaller than native micelles and had a slightly lower zeta-potential. Levels of ionic and serum calcium, as well as rennet coagulation time did not differ between milk containing native micelles or reformed casein particles. Ethanol stability and heat stability, >pH7·0, were lower for reformed casein particles than native micelles. Differences in heat stability, ethanol stability and zeta-potential can be explained in terms of the influence of increased concentrations of sodium and chloride ions in milk containing reformed casein particles. Hence, these results indicate that, if performed in a controlled manner, casein particles with properties closely similar to those of native micelles can be reformed from alkaline disrupted casein micelle

    Similar works