Techno-Economic Analysis of a Hydrogen-Based Power Supply Backup System for Tertiary Sector Buildings: A Case Study in Greece

Abstract

In view of the European Union’s strategy on hydrogen for decarbonization and buildings’ decarbonization targets, the use of hydrogen in buildings is expected in the future. Backup power in buildings is usually provided with diesel generators (DGs). In this study, the use of a hydrogen fuel cell (HFC) power supply backup system is studied. Its operation is compared to a DG and a techno-economic analysis of the latter’s replacement with an HFC is conducted by calculating relevant key performance indicators (KPIs). The developed approach is presented in a case study on a school building in Greece. Based on the school’s electricity loads, which are calculated with a dynamic energy simulation and power shortages scenarios, the backup system’s characteristics are defined, and the relevant KPIs are calculated. It was found that the HFC system can reduce the annual CO2 emissions by up to 400 kg and has a lower annual operation cost than a DG. However, due to its high investment cost, its levelized cost of electricity is higher, and the replacement of an existing DG is unviable in the current market situation. The techno-economic study reveals that subsidies of around 58–89% are required to foster the deployment of HFC backup systems in buildings

    Similar works

    Full text

    thumbnail-image