Towards a tricorder: clinical, health economic, and ethical investigation of point-of-care artificial intelligence electrocardiogram for heart failure

Abstract

Heart failure (HF) is an international public health priority and a focus of the NHS Long Term Plan. There is a particular need in primary care for screening and early detection of heart failure with reduced ejection fraction (HFrEF) – the most common and serious HF subtype, and the only one with an abundant evidence base for effective therapies. Digital health technologies (DHTs) integrating artificial intelligence (AI) could improve diagnosis of HFrEF. Specifically, through a convergence of DHTs and AI, a single-lead electrocardiogram (ECG) can be recorded by a smart stethoscope and interrogated by AI (AI-ECG) to potentially serve as a point-of-care HFrEF test. However, there are concerning evidence gaps for such DHTs applying AI; across intersecting clinical, health economic, and ethical considerations. My thesis therefore investigates hypotheses that AI-ECG is 1.) Reliable, accurate, unbiased, and can be patient self-administered, 2.) Of justifiable health economic impact for primary care deployment, and 3.) Appropriate across ethical domains for deployment as a tool for patient self-administered screening. The theoretical basis for this work is presented in the Introduction (Chapter 1). Chapter 2 describes the first large-scale, multi-centre independent external validation study of AI-ECG, prospectively recruiting 1,050 patients and highlighting impressive performance: area under the curve, sensitivity, and specificity up to 0·91 (95% confidence interval: 0·88–0·95), 91·9% (78·1–98·3), and 80·2% (75·5–84·3) respectively; and absence of bias by age, sex, and ethnicity. Performance was independent of operator, and usability of the tool extended to patients being able to self-examine. Chapter 3 presents a clinical and health economic outcomes analysis using a contemporary digital repository of 2.5 million NHS patient records. A propensity-matched cohort was derived using all patients diagnosed with HF from 2015-2020 (n = 34,208). Novel findings included the unacceptable reality that 70% of index HF diagnoses are made through hospitalisation; where index diagnosis through primary care conferred a medium-term survival advantage and long-term cost saving (£2,500 per patient). This underpins a health economic model for the deployment of AI-ECG across primary care. Chapter 4 approaches a normative ethical analysis focusing on equity, agency, data rights, and responsibility for safe, effective, and trustworthy implementation of an unprecedented at-home patient self-administered AI-ECG screening programme. I propose approaches to mitigating any potential harms, towards preserving and promoting trust, patient engagement, and public health. Collectively, this thesis marks novel work highlighting AI-ECG as tool with the potential to address major cardiovascular public health priorities. Scrutiny through complimentary clinical, health economic, and ethical considerations can directly serve patients and health systems by blueprinting best-practice for the evaluation and implementation of DHTs integrating AI – building the conviction needed to realise the full potential of such technologies.Open Acces

    Similar works