Two graphs G and H are homomorphism indistinguishable over a class of
graphs F if for all graphs F∈F the number of
homomorphisms from F to G is equal to the number of homomorphisms from F
to H. Many natural equivalence relations comparing graphs such as (quantum)
isomorphism, spectral, and logical equivalences can be characterised as
homomorphism indistinguishability relations over certain graph classes.
Abstracting from the wealth of such instances, we show in this paper that
equivalences w.r.t. any self-complementarity logic admitting a characterisation
as homomorphism indistinguishability relation can be characterised by
homomorphism indistinguishability over a minor-closed graph class.
Self-complementarity is a mild property satisfied by most well-studied logics.
This result follows from a correspondence between closure properties of a graph
class and preservation properties of its homomorphism indistinguishability
relation.
Furthermore, we classify all graph classes which are in a sense finite
(essentially profinite) and satisfy the maximality condition of being
homomorphism distinguishing closed, i.e. adding any graph to the class strictly
refines its homomorphism indistinguishability relation. Thereby, we answer
various question raised by Roberson (2022) on general properties of the
homomorphism distinguishing closure.Comment: 26 pages, 1 figure, 1 tabl