Multiplicity Problems on Algebraic Series and Context-Free Grammars

Abstract

In this paper we obtain complexity bounds for computational problems on algebraic power series over several commuting variables. The power series are specified by systems of polynomial equations: a formalism closely related to weighted context-free grammars. We focus on three problems -- decide whether a given algebraic series is identically zero, determine whether all but finitely many coefficients are zero, and compute the coefficient of a specific monomial. We relate these questions to well-known computational problems on arithmetic circuits and thereby show that all three problems lie in the counting hierarchy. Our main result improves the best known complexity bound on deciding zeroness of an algebraic series. This problem is known to lie in PSPACE by reduction to the decision problem for the existential fragment of the theory of real closed fields. Here we show that the problem lies in the counting hierarchy by reduction to the problem of computing the degree of a polynomial given by an arithmetic circuit. As a corollary we obtain new complexity bounds on multiplicity equivalence of context-free grammars restricted to a bounded language, language inclusion of a nondeterministic finite automaton in an unambiguous context-free grammar, and language inclusion of a non-deterministic context-free grammar in an unambiguous finite automaton.Comment: full technical report of a LICS'23 pape

    Similar works

    Full text

    thumbnail-image

    Available Versions