Abstract

Excited-state spectroscopy from the first Facility for Rare Isotope Beams (FRIB) experiment is reported. A 24(2)-μ\mus isomer was observed with the FRIB Decay Station initiator (FDSi) through a cascade of 224- and 401-keV γ\gamma rays in coincidence with 32Na^{32}\textrm{Na} nuclei. This is the only known microsecond isomer (1 μs≤T1/2<1 ms1{\text{ }\mu\text{s}}\leq T_{1/2} < 1\text{ ms}) in the region. This nucleus is at the heart of the N=20N=20 island of shape inversion and is at the crossroads of spherical shell-model, deformed shell-model, and ab initio theories. It can be represented as the coupling of a proton hole and neutron particle to 32Mg^{32}\textrm{Mg}, 32Mg+π−1+ν+1^{32}\textrm{Mg}+\pi^{-1} + \nu^{+1}. This odd-odd coupling and isomer formation provides a sensitive measure of the underlying shape degrees of freedom of 32Mg^{32}\textrm{Mg}, where the onset of spherical-to-deformed shape inversion begins with a low-lying deformed 2+2^+ state at 885 keV and a low-lying shape-coexisting 02+0_2^+ state at 1058 keV. We suggest two possible explanations for the 625-keV isomer in 32^{32}Na: a 6−6^- spherical shape isomer that decays by E2E2 or a 0+0^+ deformed spin isomer that decays by M2M2. The present results and calculations are most consistent with the latter, indicating that the low-lying states are dominated by deformation.Comment: 7 pages, 5 figures, accepted by Physical Review Letter

    Similar works

    Full text

    thumbnail-image

    Available Versions