Analysis and Mitigation of Shared Resource Contention on Heterogeneous Multicore: An Industrial Case Study

Abstract

In this paper, we address the industrial challenge put forth by ARM in ECRTS 2022. We systematically analyze the effect of shared resource contention to an augmented reality head-up display (AR-HUD) case-study application of the industrial challenge on a heterogeneous multicore platform, NVIDIA Jetson Nano. We configure the AR-HUD application such that it can process incoming image frames in real-time at 20Hz on the platform. We use micro-architectural denial-of-service (DoS) attacks as aggressor tasks of the challenge and show that they can dramatically impact the latency and accuracy of the AR-HUD application, which results in significant deviations of the estimated trajectories from the ground truth, despite our best effort to mitigate their influence by using cache partitioning and real-time scheduling of the AR-HUD application. We show that dynamic LLC (or DRAM depending on the aggressor) bandwidth throttling of the aggressor tasks is an effective mean to ensure real-time performance of the AR-HUD application without resorting to over-provisioning the system

    Similar works

    Full text

    thumbnail-image

    Available Versions