The average g factors of high spin, high-excitation energy, quasi continuum structures in 194,193Hg were measured by observing the precessions of the angular distributions of γ-ray transitions in several normal-deformation bands that coalesce in the decay of the entry distribution of states. The average g factors of the states leading to the three main bands in the 193,194Hg isoles were: 〈g(193Hg)〉 = +0.19(1) and 〈g(194Hg)〉 = +0.26(1), respectively. These average g factors are smaller than the average of the g factors of the high energy states in the three superdeformed bands of 194Hg, 〈g(SD;194Hg)〉 = +0.41(8). While the nucleus in the superdeformed well behaves like a rigid rotor, the present results demonstrate the important role played by multiple, quasi particle neutron configurations in the structure of normal-deformation, highly-excited nuclear states