Multi-instance multi-label (MIML) learning is widely applicated in numerous
domains, such as the image classification where one image contains multiple
instances correlated with multiple logic labels simultaneously. The related
labels in existing MIML are all assumed as logical labels with equal
significance. However, in practical applications in MIML, significance of each
label for multiple instances per bag (such as an image) is significant
different. Ignoring labeling significance will greatly lose the semantic
information of the object, so that MIML is not applicable in complex scenes
with a poor learning performance. To this end, this paper proposed a novel MIML
framework based on graph label enhancement, namely GLEMIML, to improve the
classification performance of MIML by leveraging label significance. GLEMIML
first recognizes the correlations among instances by establishing the graph and
then migrates the implicit information mined from the feature space to the
label space via nonlinear mapping, thus recovering the label significance.
Finally, GLEMIML is trained on the enhanced data through matching and
interaction mechanisms. GLEMIML (AvgRank: 1.44) can effectively improve the
performance of MIML by mining the label distribution mechanism and show better
results than the SOTA method (AvgRank: 2.92) on multiple benchmark datasets.Comment: 7 pages,2 figure