Accelerated quantum control in a three-level system by jumping along the geodesics

Abstract

In a solid-state spin system, we experimentally demonstrate a protocol for quantum-state population transfer with an improved efficiency compared to traditional stimulated Raman adiabatic passage (STIRAP). Using the ground-state triplet of the nitrogen-vacancy center in diamond, we show that the required evolution time for high-fidelity state transfer can be reduced by almost one order of magnitude. Furthermore, we establish an improved robustness against frequency detuning caused by magnetic noise as compared to STIRAP. These results provide a powerful tool for coherent spin manipulation in the context of quantum sensing and quantum computation.Comment: 8 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions