Subion Scale Turbulence Driven by Magnetic Reconnection

Abstract

The interplay between plasma turbulence and magnetic reconnection remains an unsettled question in astrophysical and laboratory plasmas. Here we report the first observational evidence that magnetic reconnection drives subion scale turbulence in magnetospheric plasmas by transferring energy to small scales. We employ a spatial coarse-grained model of Hall magnetohydrodynamics, enabling us to measure the nonlinear energy transfer rate across scale β„“\ell at position xx. Its application to Magnetospheric Multiscale mission data shows that magnetic reconnection drives intense energy transfer to subion scales. This observational evidence is remarkably supported by the results from Hybrid Vlasov-Maxwell simulations of turbulence to which the coarse-grained model is also applied. These results can potentially answer some open questions on plasma turbulence in planetary environments

    Similar works

    Full text

    thumbnail-image

    Available Versions