Egalitarian ORAM: Wear-Leveling for ORAM

Abstract

While non-volatile memories (NVMs) provide several desirable characteristics like better density and comparable energy efficiency than DRAM, DRAM-like performance, and disk-like durability, the limited endurance NVMs manifest remains a challenge with these memories. Indeed, the endurance constraints of NVMs can prevent solutions that are commonly employed for other mainstream memories like DRAM from being carried over as-is to NVMs. Specifically, in this work we observe that, Oblivious RAM (ORAM) primitive, the state-ofart solution to tackle memory bus side channel vulnerability, while widely studied for DRAMs, is particularly challenging to implement as-is for NVMs as it severely affects endurance of NVMs. This is so, as the inherent nature of ORAM primitive causes an order of magnitude increase in write traffic and furthermore, causes some regions of memory to be written far more often than others. This non-uniform write traffic as manifested by ORAM primitive stands to severely affect the lifetime of non-volatile memories (1% of baseline without ORAM) to even make it impractical to address this security vulnerabilit

    Similar works

    Full text

    thumbnail-image

    Available Versions