Magneto-optical induced supermode switching in quantum fluids of light

Abstract

The insensitivity of photons towards external magnetic fields forms one of the hardest barriers against efficient magneto-optical control, aiming at modulating the polarization state of light. However, there is even scarcer evidence of magneto-optical effects that can spatially modulate light. Here, we demonstrate the latter by exploiting strongly coupled states of semimagnetic matter and light in planar semiconductor microcavities. We nonresonantly excite two spatially adjacent exciton-polariton condensates which, through inherent ballistic near field coupling mechanism, spontaneously synchronise into a dissipative quantum fluidic supermode of definite parity. Applying a magnetic field along the optical axis, we continuously adjust the light-matter composition of the condensate exciton-polaritons, inducing a supermode switch into a higher order mode of opposite parity. Our findings set the ground towards magnetic spatial modulation of nonlinear light

    Similar works

    Full text

    thumbnail-image

    Available Versions