Emergency Data Transmission Mechanism in VANETs using Improved Restricted Greedy Forwarding (IRGF) Scheme

Abstract

One of the most critical tasks in Vehicular Ad-hoc Networks (VANETs) is broadcasting Emergency Messages (EMs) at considerable data delivery rates (DDRs). The enhanced spider-web-like Transmission Mechanism for Emergency Data (TMED) is based on request spiders and authenticated spiders to create the shortest route path between the source vehicle and target vehicles. However, the adjacent allocation is based on the DDR only and it is not clear whether each adjacent vehicle is honest or not. Hence, in this article, the Improved Restricted Greedy Forwarding (IRGF) scheme is proposed for adjacent allocation with the help of trust computation in TMED. The trust and reputation score value of each adjacent vehicle is estimated based on successfully broadcast emergency data. The vehicles’ position, velocity, direction, density, and the reputation score, are fed to a fuzzy logic (FL) scheme, which selects the most trusted adjacent node as the forwarding node for broadcasting the EM to the destination vehicles. Finally, the simulation results illustrate the TMED-IRGF model’s efficiency compared to state-of-the-art models in terms of different network metrics

    Similar works