Background and Objectives: Reproducibility is a major challenge in developing
machine learning (ML)-based solutions in computational pathology (CompPath).
The NCI Imaging Data Commons (IDC) provides >120 cancer image collections
according to the FAIR principles and is designed to be used with cloud ML
services. Here, we explore its potential to facilitate reproducibility in
CompPath research.
Methods: Using the IDC, we implemented two experiments in which a
representative ML-based method for classifying lung tumor tissue was trained
and/or evaluated on different datasets. To assess reproducibility, the
experiments were run multiple times with separate but identically configured
instances of common ML services.
Results: The AUC values of different runs of the same experiment were
generally consistent. However, we observed small variations in AUC values of up
to 0.045, indicating a practical limit to reproducibility.
Conclusions: We conclude that the IDC facilitates approaching the
reproducibility limit of CompPath research (i) by enabling researchers to reuse
exactly the same datasets and (ii) by integrating with cloud ML services so
that experiments can be run in identically configured computing environments.Comment: 13 pages, 5 figures; improved manuscript, new experiments with P100
GP