Frictional behaviour of wood-Plastic composites against cemented carbide during sliding contact

Abstract

This study provides guidelines for the industrial machining of wood-plastic composites, focusing on their behaviour under friction, specifically when friction is caused by sliding contact with cemented carbide. Using the response surface method (RSM) to explore the correlation between the friction coefficient and the wood-plastic composite type, loading force, and reciprocating frequency, a series of frictional tests were performed. The significant contributions of each factor and their two-factor interactions were determined by analysis of variance (ANOVA), with a significance level of 5%, while trends in the variation of the friction coefficient were investigated by using a response surface methodology. The wood-plastic composite types had the greatest impact on the friction coefficient, followed by loading force and reciprocating frequency. A mathematical model (CoF = −0.10 + 0.09ω−0.02f+0.01Fn−0.01ωf+2.38×10−3ωFn−2.00×10−4Fnf+0.11ω2+2.96f2−1.04×10−4Fn2) was developed to accurately predict changes in the friction coefficient during machining of such composites. According to the results of the optimisation, wood-plastic composite with polypropylene should be machined with high-speed cutting, whereas those with polyethylene and polyvinyl chloride are recommended for low-speed machining, so as to ensure the lowest friction coefficient.Funder: National Natural Science Foundation of China (31971594); Natural Science Foundation of the Jiangsu Higher Education Institutions of China (21KJB220009); the SelfMade Experimental and Teaching Instruments of Nanjing Forestry University in 2021 (nlzzyq202101); Technology Innovation Alliance of Wood/Bamboo Industry (TIAWBI2021-08); International Cooperation Joint Laboratory for Production, Education, Research and Application of Ecological Health Care on Home Furnishing</p

    Similar works