How to Sign Quantum Messages

Abstract

Signing quantum messages has been shown to be impossible even under computational assumptions. We show that this result can be circumvented by relying on verification keys that change with time or that are large quantum states. Correspondingly, we give two new approaches to sign quantum information. The first approach assumes quantum-secure one-way functions (QOWF) to obtain a time-dependent signature scheme where the algorithms take into account time. The keys are classical but the verification key needs to be continually updated. The second construction uses fixed quantum verification keys and achieves information-theoretic secure signatures against adversaries with bounded quantum memory i.e. in the bounded quantum storage model. Furthermore, we apply our time-dependent signatures to authenticate keys in quantum public key encryption schemes and achieve indistinguishability under chosen quantum key and ciphertext attack (qCKCA).Comment: 22 page

    Similar works

    Full text

    thumbnail-image

    Available Versions