Adaptive active subspace-based metamodeling for high-dimensional reliability analysis

Abstract

To address the challenges of reliability analysis in high-dimensional probability spaces, this paper proposes a new metamodeling method that couples active subspace, heteroscedastic Gaussian process, and active learning. The active subspace is leveraged to identify low-dimensional salient features of a high-dimensional computational model. A surrogate computational model is built in the low-dimensional feature space by a heteroscedastic Gaussian process. Active learning adaptively guides the surrogate model training toward the critical region that significantly contributes to the failure probability. A critical trait of the proposed method is that the three main ingredients-active subspace, heteroscedastic Gaussian process, and active learning-are coupled to adaptively optimize the feature space mapping in conjunction with the surrogate modeling. This coupling empowers the proposed method to accurately solve nontrivial high-dimensional reliability problems via low-dimensional surrogate modeling. Finally, numerical examples of a high-dimensional nonlinear function and structural engineering applications are investigated to verify the performance of the proposed method

    Similar works

    Full text

    thumbnail-image

    Available Versions