Higher-order Topological and Nodal Superconductors MS (M = Nb and Ta) Transition-metal Sulfides

Abstract

Intrinsic topological superconducting materials are exotic and vital to develop the next-generation topological superconducting devices, topological quantum calculations, and quantum information technologies. Here, we predict the topological and nodal superconductivity of MS (M = Nb and Ta) transition-metal sulfides by using the density functional theory for superconductors combining with the symmetry indicators. We reveal their higher-order topology nature with an index of Z4 = 2. These materials have a higher Tc than the Nb or Ta metal superconductors due to their flat-band and strong electron-phonon coupling nature. Electron doping and lighter isotopes can effectively enhance the Tc. Our findings show that the MS (M = Nb and Ta) systems can be new platforms to study exotic physics in the higher-order topological superconductors, and provide a theoretical support to utilize them as the topological superconducting devices in the field of advanced topological quantum calculations and information technologies.Comment: 5 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions