AROW: A V2X-based Automated Right-of-Way Algorithm for Distributed Cooperative Intersection Management

Abstract

Safe and efficient intersection management is critical for an improved driving experience. As per several studies, an increasing number of crashes and fatalities occur every year at intersections. Most crashes are a consequence of a lack of situational awareness and ambiguity over intersection crossing priority. In this regard, research in Cooperative Intersection Management (CIM) is considered highly significant since it can utilize Vehicle-to-Everything (V2X) communication among Connected and Autonomous Vehicles (CAVs). CAVs can transceive basic and/or advanced safety information, thereby improving situational awareness at intersections. Although numerous studies have been performed on CIM, most of them are reliant on the presence of a Road-Side Unit (RSU) that can act as a centralized intersection manager and assign intersection crossing priorities. In the absence of RSU, there are some distributed CIM methods that only rely on communication among CAVs for situational awareness, however, none of them are specifically focused towards Stop Controlled-Intersection (SCI) with the aim of mitigating ambiguity among CAVs. Thus, we propose an Automated Right-of-Way (AROW) algorithm based on distributed CIM that is capable of reducing ambiguity and handling any level of noncompliance by CAVs. The algorithm is validated with extensive experiments for its functionality and robustness, and it outperforms the current solutions

    Similar works

    Full text

    thumbnail-image

    Available Versions