Excitation and voltage-gated modulation of single-mode dynamics in a planar nano-gap spin Hall nano-oscillator

Abstract

We experimentally study the dynamical modes excited by current-induced spin-orbit torque and its electrostatic gating effect in a 3-terminal planar nano-gap spin Hall nano-oscillator (SHNO) with a moderate interfacial perpendicular magnetic anisotropy (IPMA). Both quasilinear propagating spin-wave and localized "bullet" modes are achieved and controlled by varying the applied in-plane magnetic field and driving current. The minimum linewidth shows a linear dependence on the actual temperature of the active area, confirming single-mode dynamics based on the nonlinear theory of spin-torque nano-oscillation with a single mode. The observed electrostatic gating tuning oscillation frequency arises from voltage-controlled magnetic anisotropy and threshold current of SHNO via modification of the nonlinear damping and/or the interfacial spin-orbit coupling of the magnetic multilayer. In contrast to previously observed two-mode coexistence degrading the spectral purity in Py/Pt-based SHNOs with a negligible IPMA, a single coherent spin-wave mode with a low driven current can be achieved by selecting the ferromagnet layer with a suitable IPMA because the nonlinear mode coupling can be diminished by bringing in the PMA field to compensate the easy-plane shape anisotropy. Moreover, the simulations demonstrate that the experimentally observed current and gate-voltage modulation of auto-oscillation modes are also closely associated with the nonlinear damping and mode coupling, which are determined by the ellipticity of magnetization precession. The demonstrated nonlinear mode coupling mechanism and electrical control approach of spin-wave modes could provide the clue to facilitate the implementation of the mutual synchronization map for neuromorphic computing applications in SHNO array networks.Comment: 11 pages, 10 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions