Abstract

We present early spectral observations of the very slow Galactic nova Gaia22alz, over its gradual rise to peak brightness that lasted 180 days. During the first 50 days, when the nova was only 3--4 magnitudes above its normal brightness, the spectra showed narrow (FWHM \approx 400 km s1^{-1}) emission lines of H Balmer, He I, He II, and C IV, but no P Cygni absorption. A few weeks later, the high-excitation He II and C IV lines disappeared, and P Cygni profiles of Balmer, He I, and eventually Fe II lines emerged, yielding a spectrum typical of classical novae before peak. We propose that the early spectra of Gaia22alz are produced in the white dwarf's envelope or accretion disk, reprocessing X-ray and ultraviolet emission from the white dwarf after a dramatic increase in the rate of thermonuclear reactions, during a phase known as the ``early X-ray/UV flash''. If true, this would be one of the rare times that the optical signature of the early X-ray/UV flash has been detected. While this phase might last only a few hours in other novae and thus be easily missed, it was possible to detect in Gaia22alz due to its very slow and gradual rise and thanks to the efficiency of new all-sky surveys in detecting transients on their rise. We also consider alternative scenarios that could explain the early spectral features of Gaia22alz and its unusually slow rise.Comment: 20 pages, 12 figures, 2 tables. Submitted to MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions