Strategic Monitoring of Networked Systems with Heterogeneous Security Levels

Abstract

We consider a strategic network monitoring problem involving the operator of a networked system and an attacker. The operator aims to randomize the placement of multiple protected sensors to monitor and protect components that are vulnerable to attacks. We account for the heterogeneity in the components' security levels and formulate a large-scale maximin optimization problem. After analyzing its structure, we propose a three-step approach to approximately solve the problem. First, we solve a generalized covering set problem and run a combinatorial algorithm to compute an approximate solution. Then, we compute approximation bounds by solving a nonlinear set packing problem. To evaluate our solution approach, we implement two classical solution methods based on column generation and multiplicative weights updates, and test them on real-world water distribution and power systems. Our numerical analysis shows that our solution method outperforms the classical methods on large-scale networks, as it efficiently generates solutions that achieve a close to optimal performance and that are simple to implement in practice

    Similar works

    Full text

    thumbnail-image

    Available Versions