Enabling Deep Neural Network Inferences on Resource-constraint Devices

Abstract

Department of Computer Science and EngineeringWhile deep neural networks (DNN) are widely used on various devices, including resource-constraint devices such as IoT, AR/VR, and mobile devices, running DNN from resource-constrained devices remains challenging. There exist three approaches for DNN inferences on resource-constraint devices: 1) lightweight DNN for on-device computing, 2) offloading DNN inferences to a cloud server, and 3) split computing to utilize computation and network resources efficiently. Designing a lightweight DNN without compromising the accuracy of DNN is challenging due to a trade-off between latency and accuracy, that more computation is required to achieve higher accuracy. One solution to overcome this challenge is pre-processing to extract and transfer helpful information to achieve high accuracy of DNN. We design the pre-processing, which consists of three processes. The first process of pre-processing is finding out the best input source. The second process is the input-processing which extracts and contains important information for DNN inferences among the whole information gained from the input source. The last process is choosing or designing a suitable lightweight DNN for processed input. As an instance of how to apply the pre-processing, in Sec 2, we present a new transportation mode recognition system for smartphones called DeepVehicleSense, which aims at achieving three performance objectives: high accuracy, low latency, and low power consumption at once by exploiting sound characteristics captured from the built-in microphone while being on candidate transportations. To achieve high accuracy and low latency, DeepVehicleSense makes use of non-linear filters that can best extract the transportation sound samples. For the recognition of five different transportation modes, we design a deep learning-based sound classifier using a novel deep neural network architecture with multiple branches. Our staged inference technique can significantly reduce runtime and energy consumption while maintaining high accuracy for the majority of samples. Offloading DNN inferences to a server is a solution for DNN inferences on resource-constraint devices, but there is one concern about latency caused by data transmission. To reduce transmission latency, recent studies have tried to make this offloading process more efficient by compressing data to be offloaded. However, conventional compression techniques are designed for human beings, so they compress data to be possible to restore data, which looks like the original from the perspective of human eyes. As a result, the compressed data through the compression technique contains redundancy beyond the necessary information for DNN inference. In other words, the most fundamental question on extracting and offloading the minimal amount of necessary information that does not degrade the inference accuracy has remained unanswered. To answer the question, in Sec 3, we call such an ideal offloading semantic offloading and propose N-epitomizer, a new offloading framework that enables semantic offloading, thus achieving more reliable and timely inferences in highly-fluctuated or even low-bandwidth wireless networks. To realize N-epitomizer, we design an autoencoder-based scalable encoder trained to extract the most informative data and scale its output size to meet the latency and accuracy requirements of inferences over a network. Even though our proposed lightweight DNN and offloading framework with the essential information extractor achieve low latency while preserving DNN performance, they alone cannot realize latency-guaranteed DNN inferences. To realize latency-guaranteed DNN inferences, the computational complexity of the lightweight DNN and the compression performance of the encoder for offloading should be adaptively selected according to current computation resources and network conditions by utilizing the DNN's trade-off between computational complexity and DNN performance and the encoder's trade-off between compression performance and DNN performance. To this end, we propose a new framework for latency-guaranteed DNN inferences called LG-DI, which predicts DNN performance degradation given a latency budget in advance and utilizes the better method between the lightweight DNN and offloading with compression. As a result, our proposed framework for DNN inferences can guarantee latency regardless of changes in computation and network resources while maintaining DNN performance as much as possible.ope

    Similar works