FPGA-Patch: Mitigating Remote Side-Channel Attacks on FPGAs using Dynamic Patch Generation

Abstract

We propose FPGA-Patch, the first-of-its-kind defense that leverages automated program repair concepts to thwart power side-channel attacks on cloud FPGAs. FPGA-Patch generates isofunctional variants of the target hardware by injecting faults and finding transformations that eliminate failure. The obtained variants display different hardware characteristics, ensuring a maximal diversity in power traces once dynamically swapped at run-time. Yet, FPGA-Patch forces the variants to have enough similarity, enabling bitstream compression and minimizing dynamic exchange costs. Considering AES running on AMD/Xilinx FPGA, FPGA-Patch increases the attacker's effort by three orders of magnitude, while preserving the performance of AES and a minimal area overhead of 14.2%.Comment: 6 page

    Similar works

    Full text

    thumbnail-image

    Available Versions