Affective Computing for Human-Robot Interaction Research: Four Critical Lessons for the Hitchhiker

Abstract

Social Robotics and Human-Robot Interaction (HRI) research relies on different Affective Computing (AC) solutions for sensing, perceiving and understanding human affective behaviour during interactions. This may include utilising off-the-shelf affect perception models that are pre-trained on popular affect recognition benchmarks and directly applied to situated interactions. However, the conditions in situated human-robot interactions differ significantly from the training data and settings of these models. Thus, there is a need to deepen our understanding of how AC solutions can be best leveraged, customised and applied for situated HRI. This paper, while critiquing the existing practices, presents four critical lessons to be noted by the hitchhiker when applying AC for HRI research. These lessons conclude that: (i) The six basic emotions categories are irrelevant in situated interactions, (ii) Affect recognition accuracy (%) improvements are unimportant, (iii) Affect recognition does not generalise across contexts, and (iv) Affect recognition alone is insufficient for adaptation and personalisation. By describing the background and the context for each lesson, and demonstrating how these lessons have been learnt, this paper aims to enable the hitchhiker to successfully and insightfully leverage AC solutions for advancing HRI research.Comment: 11 pages, 3 figures, 1 tabl

    Similar works

    Full text

    thumbnail-image

    Available Versions