A Comparative Analysis on Volatility and Scalability Properties of Blockchain Compression Protocols

Abstract

Increasing popularity of trading digital assets can lead to significant delays in Blockchain networks when processing transactions. When transaction fees become miners' primary revenue, an imbalance in reward may lead to miners adopting deviant mining strategies. Scaling the block capacity is one of the potential approaches to alleviate the problem. To address this issue, this paper reviews and evaluates six state-of-the-art compression protocols for Blockchains. Specifically, we designed a Monte Carlo simulation to simulate two of the six protocols to observe their compression performance under larger block capacities. Furthermore, extensive simulation experiments were conducted to observe the mining behaviour when the block capacity is increased. Experimental results reveal an interesting trade-off between volatility and scalability. When the throughput is higher than a critical point, it worsens the volatility and threatens Blockchain security. In the experiments, we further analyzed the relationship between volatility and scalability properties with respect to the distribution of transaction values. Based on the analysis results, we proposed the recommended maximum block size for each protocol. At last, we discuss the further improvement of the compression protocols

    Similar works

    Full text

    thumbnail-image

    Available Versions