Abstract

A comprehensive suite of diagnostics has allowed detailed measurements of the Alfven eigenmode (AE) spatial structure and subsequent fast-ion transport in the ASDEX Upgrade (AUG) tokamak [ 1]. Reversed shear Alfven eigenmodes (RSAEs) and toroidal induced Alfven eigenmodes (TAEs) have been driven unstable by fast ions from ICRH as well as NBI origin. In ICRF heated plasmas, diffusive and convective fast-ion losses induced by AEs have been characterized in fast-ion phase space. While single RSAEs and TAEs eject resonant fast ions in a convective process directly proportional to the fluctuation amplitude, delta B/B, the overlapping of multiple RSAE and TAE spatial structures and wave-particle resonances leads to a large diffusive loss, scaling as (delta B/B)(2). In beam heated discharges, coherent fast-ion losses have been observed primarily due to TAEs. Core localized, low amplitude NBI driven RSAEs have not been observed to cause significant coherent fast-ion losses. The temporal evolution of the confined fast-ion profile in the presence of RSAEs and TAEs has been monitored with high spatial and temporal resolution. A large drop in the central fast-ion density due to many RSAEs has been observed as q(min) passes through an integer. The AE radial and poloidal structures have been obtained with unprecedented details using a fast SXR as well as 1D and 2D ECE radiometers. GOURDON and HAGIS simulations have been performed to identify the orbit topology of the escaping ions and study the transport mechanisms. Both passing and trapped ions are strongly redistributed by AEs

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 06/04/2023